Proč by mělo firmy zajímat strojové učení a kde jim může usnadnit procesy, vysvětluje šéf inovací v Asseco Solutions
I když se to na první pohled nemusí zdát, technologie umělé inteligence už dnes výrazným způsobem ovlivňují to, jak firmy fungují, a jejich význam bude v příštích letech ještě více akcelerovat. Týká se to celé podmnožiny souvisejících oborů od počítačového vidění po zpracování jazyka a nedílnou součástí je také strojové učení.
Právě strojové učení, v angličtině označované jako machine learning, má do budoucna velký potenciál měnit procesy ve firmách všech velikostí. Jak přesně mohou být tyto technologie užitečné? O tom pro CzechCrunch napsal Lukáš Ontl, vedoucí pro inovace a rozvoj produktů tuzemské společnosti Asseco Solutions.
Asseco Solutions loni oslavilo třicet let od vstupu na trh a zaměřuje se na vývoj podnikových informačních systémů na českém a slovenském trhu. Jeho ERP systémy z rodiny Helios zaměřené na různě velké společnosti i státní správu přitom výrazně řeší automatizaci, a to jak prostřednictvím technologie strojového učení, tak nově také robotické automatizace procesů (RPA).
***
Strojové učení (ML) je podmnožina umělé inteligence (AI), která počítačům umožňuje učit se a reagovat, aniž by byly definovány přesné algoritmy. Uživatel nemusí na počátku přesně definovat podmínky, dle kterých chce vytvářet předpovědi či analýzu dat. Strojové učení je naopak proces, který kontinuálním sběrem dat vytváří a zpřesňuje matematický model, na jehož základě jsme schopni identifikovat a formulovat souvislosti či predikce.
Jako analogii ke strojovému učení si můžeme představit lidské učení, kdy se na základě zkušenosti dokážeme rozhodovat a v čase, kdy získáváme další a další zkušenosti, může být náš úsudek přesnější a má tak pro nás větší hodnotu. To znamená, že obdobně, jako se učí člověk, se snažíme vytrénovat počítače tak, aby dokázaly analyzovat data a uměly se z nich dále učit.
Ač se některé příklady užití zdají přehnané nebo (z dnešního pohledu) příliš vizionářské, existuje mnoho praktických aplikací strojového učení, se kterými se běžně setkáváme – spamové filtry na e-mailu, doporučení produktů od Amazonu a Netflixu, Google jeho pomocí upřednostňuje výsledky vyhledávání a nabízená videa na YouTube, využívají ho chatboti, systémy rozpoznávání obrázků (například obličejů nebo SPZ) či zvuku a další.
Společnost Gartner například předpovídá, že v následujících letech bude různé formy strojového učení používat až 70 procent organizací ve Spojených státech a západním světě. Níže uvedené oblasti by mohly být způsobem, jak zavést strojové učení do našich ERP systémů a umožnit našim zákazníkům jejich praktické využití.
Technologie strojového učení nabízí několik scénářů, jak je možné data zpracovávat. Každý z nich je zaměřen na jiný typ problému – a právě na pět nejčastějších z nich se níže podíváme podrobněji. Paralelně k této kategorizaci je zároveň možné praktické využití dělit po procesních liniích, tedy například pro obchod, HR, marketing, finance, zákaznickou péči a podobně.
Nahlásit komentář
Zdá se vám, že komentář je urážlivý, nebo sprostý? Dejte nám vědět.